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Typical 6-hour analysis cycle

Bayes interpretation: a forecast (the “prior”), is combined with the
new observations, to create the Analysis (IC) (the “posterior”)



The observing system a few years ago…

Now we have even more satellite data…

Before
1979
only
raobs



Typical distribution of observations in +/- 3hours
Typical distribution of the observing systems in a 6 hour period:

a real mess: different units, locations, times



Typical distribution of observations in +/- 3hours
Typical distribution of the observing systems in a 6 hour period:

a real mess: different units, locations, times

Before ~1979



Model grid points (uniformly distributed) and observations
(randomly distributed). In a local approach only observations

within a radius of influence may be considered
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Some statistics of NWP…



Some comparisons…
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Comparisons of Northern and Southern Hemispheres



Satellite radiances are essential in the SH



More and more satellite radiances…



Intro. to remote sensing and dataIntro. to remote sensing and data
assimilation: a toy exampleassimilation: a toy example

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:

 
y = h(T ) ! !T

4
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Intro. to remote sensing and dataIntro. to remote sensing and data
assimilation: a toy exampleassimilation: a toy example

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:
• (The observational model is also called forward model)
• We also have a forecast model for the temperature

• We will derive the data assim eqs (KF and Var) for this toy
system (easy to understand!)
• Will compare the toy and the real huge vector/matrix
equations: they are exactly the same!
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Toy temperature data assimilation, measure radiance

We have a forecast Tb (prior) and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )

The new information (or innovation) is the
observational increment:



Toy temperature data assimilation, measure radiance

We have a forecast Tb (prior) and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )

The new information (or innovation) is the
observational increment:

yo ! h(Tb ) = h(Tt ) + "
0
! h(Tb ) = "

0
+ h(Tt ) ! h(Tb ) = "

0
! H"b

The innovation can be written in terms of errors:

H = !h / !Twhere                            includes changes of units
and observation model nonlinearity, e.g.,

We assume that the obs. and model errors are
unbiased, Gaussian and uncorrelated

h(T ) ~ !T
4
,"h / "T ~ 4!T

3



Toy temperature data assimilation, measure radiance

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb ) = "
0
! H"b



Toy temperature data assimilation, measure radiance

We have a forecast Tb and a radiance obs

From an OI/KF (sequential) point of view:

yo = h(Tt ) + !
0

yo ! h(Tb ) = "
0
! H"b

Ta = Tb + w(yo ! h(Tb )) = Tb + w("0 ! H"b )

or !
a
= !

b
+ w(!

0
" H!

b
)

!
a

2
= "

a

2

Now, the analysis error variance (over many cases) is

Here w is a weight, and we want to find the optimal weight



Toy temperature data assimilation, measure radiance

We have a forecast Tb and a radiance obs

From an OI/KF (sequential) point of view:

yo = h(Tt ) + !
0

yo ! h(Tb ) = "
0
! H"b

Ta = Tb + w(yo ! h(Tb )) = Tb + w("0 ! H"b )

or !
a
= !

b
+ w(!

0
" H!

b
)

In OI/KF we choose w to minimize the analysis error: !
a

2
= "

a

2

!
a

2
= !

b

2
+ w

2
(!

o

2
+ H!

b

2
H ) " 2w!

b

2
H

By taking      and
averaging in time
we can compute:

assuming that             are uncorrelated!
b
,!
0

!
a

2



Toy temperature data assimilation, measure radiance

We have a forecast Tb and a radiance obs

From an OI/KF (sequential) point of view:

yo = h(Tt ) + !
0

yo ! h(Tb ) = "
0
! H"b

Ta = Tb + w(yo ! h(Tb )) = Tb + w("0 ! H"b )

or !
a
= !

b
+ w(!

0
" H!

b
)

!
a

2
= "

a

2

we obtain w = !
b

2
H (!

o

2
+ H!

b

2
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2

!w
= 0
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2
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b

2
+ w

2
(!

o

2
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b

2
H ) " 2w!

b

2
H

From

In OI/KF we choose w to minimize the analysis error:

do it!



Toy temperature data assimilation, measure radiance

Repeat: from an OI/KF point of view the analysis (posterior) is:

Ta = Tb + w(yo ! h(Tb )) = Tb + w("0 ! H"b )

with w = !
b

2
H (!

o

2
+ !

b

2
H

2
)
"1

Note that the scaled weight             is between 0 and 1wH

If !
o

2
>> !

b

2
H

2
T
a
! T

b
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2
<< !

b

2
H

2 T
a
! wy

o

The analysis interpolates between the background and the
observation, giving more weights to smaller error variances.



From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

2J =
(Ta ! Tb )

2

" b

2
+
(h(Ta ) ! yo )

2

" o

2

Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

This analysis temperature Ta is closest to both the
forecast Tb and the observation yo and maximizes the
likelihood of Ta~Ttruth given the information we have.

It is easier to find the analysis increment Ta-Tb that
minimizes the cost function  J rather than the analysis
Ta (this is called incremental method)



From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

2J
min

=
(Ta ! Tb )

2

" b

2
+
(h(Ta ) ! yo )

2

" o

2

Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

The cost function J comes from a maximum likelihood analysis: 



From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

2J
min

=
(Ta ! Tb )
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

Likelihood of Ttruth given Tb: 
1

2!"
b

exp #
T
truth

# T
b

2"
b

2

$

%
&

'

(
)



From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

2J
min

=
(Ta ! Tb )

2

" b

2
+
(h(Ta ) ! yo )

2

" o

2
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From a 3D-Var point of view,
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minimizes the cost function J:
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
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Minimizing the cost function maximizes the likelihood of the truth



From a 3D-Var point of view,
we want to find (Ta -Tb) that
minimizes the cost function J.
This maximizes the likelihood of
Ta~Ttruth given both Tb and yo

2J
min

=
(Ta ! Tb )

2

" b

2
+
(h(Ta ) ! yo )

2

" o

2

Toy temperature data assimilation, variational approach

Again, we have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:



From a 3D-Var point of view,
we want to find (Ta -Tb) that
minimizes the cost function J:

2J
min

=
(Ta ! Tb )

2

" b

2
+
(h(Ta ) ! yo )

2
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So that from
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(Ta ! Tb )
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h(Ta ) ! yo = h(Tb ) ! yo + H (Ta ! Tb )

!2J / !(T
a
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b
) = 0 we get

Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:



From a 3D-Var point of view,
we want to find (Ta -Tb) that
minimizes the cost function J:
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h(Ta ) ! yo = h(Tb ) ! yo + H (Ta ! Tb )

!2J / !(T
a
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b
) = 0 we get
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"2
+ H!
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Ta = Tb + w yo ! h(Tb )( ) where now

Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:



From a 3D-Var point of view,
we want to find (Ta -Tb) that
minimizes the cost function J:

2J
min

=
(Ta ! Tb )

2
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where

Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

This variational solution is the same as the one obtained with
Kalman filter (sequential approach, like Optimal Interpolation):

Ta = Tb + w(yo ! h(Tb )) = Tb + w("0 ! H"b )

with w = !
b

2
H (!

o

2
+!

b

2
H

2
)
"1

(Show the w’s are
the same!)



Typical 6-hour analysis cycle

Forecast phase, followed by Analysis phase

Typical 6-hour analysis cycle



Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from ti to ti+1: T
b
(t
i+1
) = m T

a
(t
i
)[ ]

So that we can predict the forecast error variance

Forecast error: !
b
(t
i+1
) = T

b
(t
i+1
) " T

t
(t
i+1
) =

m T
a
(t
i
)[ ]" m T

t
(t
i
)[ ] + !m (ti+1) = M!

a
(t
i
) + !

m
(t
i+1
)

! b

2
(ti+1) = M

2
! a

2
(ti ) +Qi; Qi = "m

2
(ti+1)

(The forecast error variance comes from the analysis and model errors)



Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from ti to ti+1: T
b
(t
i+1
) = m T

a
(t
i
)[ ]

So that we can predict the forecast error variance

Now we can compute the optimal weight (KF or Var, whichever form is
more convenient, since they are equivalent):

Forecast error: !
b
(t
i+1
) = T

b
(t
i+1
) " T

t
(t
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) =

m T
a
(t
i
)[ ]" m T

t
(t
i
)[ ] + !m (ti+1) = M!

a
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i
) + !

m
(t
i+1
)

! b

2
(ti+1) = M

2
! a

2
(ti ) +Qi; Qi = "m

2
(ti+1)

w = !
b

2
H (!
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2
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b

2
H )
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b
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o
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(The forecast error variance comes from the analysis and model errors)



Toy temperature analysis cycle (Kalman Filter)

Analysis phase: we use the new observation

Ta (ti+1) = Tb (ti+1) + wi+1 yo(ti+1) ! h Tb (ti+1)( )"# $%

we get

We also need the compute the new analysis error variance:

!
a

2
(t
i+1
) =

!
o

2!
b

2

!
o

2
+ H

2!
b

2

"

#$
%

&'
i+1

= (1( w
i+1
H )!

b

2

i+1
< !

b

2

i+1

yo(ti+1)

!
a

"2
= !

b

"2
+ H!

o

"2
H

now we can advance to the next cycle t
i+2
, t

i+3
,...

compute the new observational increment yo(ti+1) ! h Tb (ti+1)( )

and the new analysis:

from



Summary of toy system equations (for a scalar)

“We use the model to forecast Tb and to
update the forecast error variance from t

i
to          ”t

i+1

T
b
(t
i+1
) = m T

a
(t
i
)[ ] ! b

2
(ti+1) = M

2 ! a

2
(ti )"# $% +Q

M = !m / !T

Interpretation…

Q: model deficiencies error covariance



Summary of toy system equations (for a scalar)

Ta = Tb + w yo ! h Tb( )"# $%

“We use the model to forecast Tb and to
update the forecast error variance from t

i
to          ”t

i+1

T
b
(t
i+1
) = m T

a
(t
i
)[ ]

At t
i+1

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal weight:

!
b

2
(t
i+1
) = M

2 !
a

2
(t
i
)"# $% M = !m / !T



Summary of toy system equations (for a scalar)

Ta = Tb + w yo ! h Tb( )"# $%

“We use the model to forecast Tb and to
update the forecast error variance from t

i
to          ”t

i+1

T
b
(t
i+1
) = m T

a
(t
i
)[ ]

At t
i+1

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal weight:

w = !
b

2
H (!

o

2
+ H!

b

2
H )

"1

“The optimal weight is the background error variance divided
by the sum of the observation and the background error
variance.                     ensures that the magnitudes and units
are correct.”

H = !h / !T

! b

2
(ti+1) = M

2 ! a

2
(ti )"# $% +Q M = !m / !T



Summary of toy system equations (cont.)

w = !
b

2
H (!

o

2
+ H!

b

2
H )

"1

“The optimal weight is the background error variance divided
by the total variance (sum of the observation and the
background error variance).                     ensures that the
magnitudes and units are correct.”

H = !h / !T

Note that the larger the background error variance, the
larger the correction to the first guess.



Summary of toy system equations (cont.)

!
a

2
=

!
o

2!
b

2

!
o

2
+ H

2!
b

2

"

#$
%

&'
= (1( wH )!

b

2

The analysis error variance is given by

“The analysis error variance is reduced from the background
error by a factor (1 -  scaled optimal weight)”



Summary of toy system equations (cont.)

!
a

2
=

!
o

2!
b

2

!
o

2
+ H

2!
b

2

"

#$
%

&'
= (1( wH )!

b

2

The analysis error variance is given by

This can also be written as

!
a

"2
= !

b

"2
+!

o

"2
H

2( )

“The analysis precision is given by the sum of the background
and observation precisions”

“The analysis error variance is reduced from the background
error by a factor (1 -  scaled optimal weight)”



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-108



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

We have to replace scalars (obs, forecasts) by vectors

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-108

Tb ! xb; Ta ! xa; yo ! yo;

and their error variances by error covariances:

!
b

2
" B; !

a

2
" A; !

o

2
" R;



Interpretation of the NWP system of equations

x
a
= x

b
+K y

o
! H x

b( )"# $%

“We use the model to forecast from t
i

to t
i+1

x
b
(t
i+1
) = M x

a
(t
i
)[ ]

At t
i+1

”



Interpretation of the NWP system of equations

x
a
= x

b
+K y

o
! H x

b( )"# $%

“We use the model to forecast from t
i

to t
i+1

x
b
(t
i+1
) = M x

a
(t
i
)[ ]

At t
i+1

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”

K = BH
T
(R +HBH

T
)
!1

”



Interpretation of the NWP system of equations

x
a
= x

b
+K y

o
! H x

b( )"# $%

“We use the model to forecast from t
i

to t
i+1

x
b
(t
i+1
) = M x

a
(t
i
)[ ]

At t
i+1

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”

K = BH
T
(R +HBH

T
)
!1

“The optimal weight is the background error covariance divided by
the sum of the observation and the background error covariance.

ensures that the magnitudes and units are correct.
The larger the background error variance, the larger the correction
to the first guess.”

H = !H / !x

”



Interpretation of the NWP system of equations

“We use the model to forecast from t
i

to t
i+1

x
b
(t
i+1
) = M x

a
(t
i
)[ ]

”

Forecast phase:



Interpretation of the NWP system of equations

“We use the model to forecast from t
i

to t
i+1

x
b
(t
i+1
) = M x

a
(t
i
)[ ]

”

Forecast phase:

“We use the linear tangent model M and its adjoint MT to
forecast B (plus model errors covariance Q)”

B(t
i+1
) =M A(t

i
)[ ]MT

+Q



Interpretation of the NWP system of equations

“We use the model to forecast from t
i

to t
i+1

x
b
(t
i+1
) = M x

a
(t
i
)[ ]

”

Forecast phase:

“We use the linear tangent model and its adjoint to
forecast B”

B(t
i+1
) =M A(t

i
)[ ]MT

“However, this step is so horrendously expensive that it
makes Kalman Filter computationally unfeasible for NWP”.

“Ensemble Kalman Filter solves this problem by estimating
B using an ensemble of forecasts.”



Interpretation of the NWP system of equations

“We use the model to forecast from t
i

to t
i+1

x
b
(t
i+1
) = M x

a
(t
i
)[ ]

”

Forecast phase:

B(t
i+1
) =M A(t

i
)[ ]MT

“Ensemble Kalman Filter solves this problem by estimating
B using an ensemble of K~50-100 forecasts.”

“This is too expensive!”

x
b

k
(t
i+1
) = M x

a

k
(t
i
)!" #$, k = 1,2,...K

B(t
i+1
) =

1

K !1
(x

b

k
! x

b
) *

k=1

K

" (x
b

k
! x

b
)
T
=

1

K !1
X

b
X

b

T

ensemble of forecasts



Summary of NWP equations (cont.)

A = I !KH( )B

The analysis error covariance is given by

“The analysis covariance is reduced from the background
covariance by a factor (I -  scaled optimal gain)”



Summary of NWP equations (cont.)

A = I !KH( )B

The analysis error covariance is given by

This can also be written as

A
!1
= B

!1
+H

T
R

!1
H

“The analysis precision is given by the sum of the background
and observation precisions”

“The analysis covariance is reduced from the background
covariance by a factor (I -  scaled optimal gain)”



Summary of NWP equations (cont.)

A = I !KH( )B

The analysis error covariance is given by

This can also be written as

“The analysis precision is given by the sum of the background
and observation precisions”

“The analysis covariance is reduced from the background
covariance by a factor (I -  scaled optimal gain)”
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“The variational approach and the sequential approach are
solving the same problem, with the same K, but only KF (or
EnKF) provide an estimate of the analysis error covariance”
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Variational: 3D-VarVariational: 3D-Var
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It seems like a simple change, but it is not! (e.g., adjoint)It seems like a simple change, but it is not! (e.g., adjoint)
What is B? It should be tunedWhat is B? It should be tuned……



Ensemble Transform Kalman FilterEnsemble Transform Kalman Filter
(EnKF)(EnKF)

Forecast step:

Analysis step:

The new analysis error covariance in the ensemble space is (Hunt et al.
2007)

And the new ensemble perturbations are given by a  matrix transform:
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Comparison of 4-D Var and LETKF at JMA
T. Miyoshi and Y. Sato

• 4D-Var and EnKF are the two advanced, feasible methods
• There will be a workshop on them in Buenos Aires (Nov’08)!!!

• In Ensemble Kalman Filter the background error covariance
B is approximated and advanced in time with an ensemble of
K forecasts. In the subspace of the ensemble, B=I so that
matrix inversions are efficient.

• So far, comparisons show EnKF is slightly better than 3D-
Var, but there has not been enough time to develop tunings

• At JMA, Takemasa Miyoshi has been performing
comparisons of the Local Ensemble Transform Kalman Filter
(Hunt et al., 2007) with their operational 4D-Var

• Comparisons are made for August 2004



Comparison of 4D-Var and LETKF at JMA
T. Miyoshi and Y. Sato

N.H.

S.H.

Tropics

AC
RMS error against analysis

Bias

better

better

worse



Comparison of LETKF and 4D-Var at JMA
T. Miyoshi and Y. Sato
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Comparison of 4-D Var and LETKF at JMA
18th typhoon in 2004, IC 12Z 8 August 2004

T. Miyoshi and Y. Sato

  

operational LETKF



Comparison of 4-D Var and LETKF at JMA
RMS error statistics for all typhoons in August 2004

T. Miyoshi and Y. Sato

Operational 4D-Var LETKF
 



Summary
• Data assimilation methods have contributed much to the

improvements in NWP.
• A toy example is easy to understand, and the equations are

the same for a realistic system
• Kalman Filter (too costly) and 4D-Var (complicated) solve

the same problem (if model is linear and we use long
assimilation windows)

• Ensemble Kalman Filter is feasible and simple
• It is starting to catch up with operational 4D-Var
• EnKF can also estimate observational errors online
• Important problems: estimate and correct model errors &

obs. errors, optimal obs. types and locations, tuning
additive/multiplicative inflation, parameters estimation,…
– Tellus: 4D-Var or EnKF? In press
– Pap ers posted in “Weather Chaos UMD”, Hunt et al, Szunyogh et al
– Workshop in Buenos Aires Nov ’08


